Guidelines

The Graeme Clark Institute for Biomedical Engineering (GCI) is inviting submissions for the HealthTech Innovation Challenge.

The objectives of the HealthTech Innovation Challenge are:

- To promote Science, Technology, Engineering, Mathematics and Medicine (STEMM)-based interdisciplinary research;
- To foster the translation of research with applications that will lead to improvements in health outcomes.
- To stimulate collaboration of MACH partner organisations

Proposals must address the health technology (HealthTech) focus of the Challenge.

HealthTech refers to technology that is used to prevent, diagnose, monitor or treat diseases or medical conditions. HealthTech categories relevant to the Challenge are:

- Medical devices;
- Diagnostics;
- Assistive technology;
- Hospital accessories, systems improvements and surgical instruments/tools
- Digital health including mobile health; and
- Technology that supports drug discovery and development, and pharmaceutical manufacturing
Key dates

Launch date of the HealthTech Innovation Challenge:
Friday 6 September

Application closing date:
Midday (12pm), Thursday 26 September,

Announcement of the finalists:
Early October

Pitch event:
Monday, 21 October

Project start date:
November

Judging criteria

The submissions will be assessed against the following judging criteria.

The project demonstrates

- A clear clinical need
- A concise, achievable project plan with realistic objectives
- Demonstrated efforts to conduct inter-disciplinary research, by team construction, partners or translation pathway
- Well placed research with significant potential for future funding by granting bodies and/or industry

Competition terms

The *Competition Terms* are available for download at https://clarkinstitute.unimelb.edu.au/#htic

See the section on *Application Process* to accept the *Competition Terms*.

Acknowledgement

The LI and PIs must ensure that the GCI contribution and support of the project be appropriately acknowledged in publications and presentations.

Sponsorship

The four prizes are sponsored by the Graeme Clark Institute for Biomedical Engineering, University of Melbourne.
Application process

An online application form can be accessed at the Graeme Clark Institute website:
https://clarkinstitute.unimelb.edu.au/#htic

To be eligible for judging processes, all documents below must be submitted:

- An application form
- A signed Letter of Support from the Chief Investigator (CI)’s host organisation executive or leadership team should be uploaded that states the Lead Investigator will bear full responsibility for the conduct of the project.

Within 24 hours of submission of application, the CI will receive an email from kluders@unimelb.edu.au confirming receipt of the application.

Enquiries

All enquiries should be made to kluders@unimelb.edu.au The Subject line should state “HTIC”.
Technology Readiness Levels:

Technology readiness level (TRL) is an approach to assess the technology maturity and progress of the research activity. The TRL is defined below (U.S. Department of Defense, *Technology Readiness Assessment Guidance*, April 2011).

<table>
<thead>
<tr>
<th>Level</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRL 1</td>
<td>Basic Research: Initial scientific research has been conducted. Principles are qualitatively postulated and observed. Focus is on new discovery rather than applications.</td>
</tr>
<tr>
<td>TRL 2</td>
<td>Applied Research: Initial practical applications are identified. Potential of material or process to solve a problem, satisfy a need, or find application is confirmed.</td>
</tr>
<tr>
<td>TRL 3</td>
<td>Critical Function or Proof of Concept Established: Applied research advances and early stage development begins. Studies and laboratory measurements validate analytical predictions of separate elements of the technology.</td>
</tr>
<tr>
<td>TRL 4</td>
<td>Lab Testing/Validation of Alpha Prototype Component/Process: Design, development and lab testing of components/processes. Results provide evidence that performance targets may be attainable based on projected or modelled systems.</td>
</tr>
<tr>
<td>TRL 5</td>
<td>Laboratory Testing of Integrated/Semi-Integrated System: System Component and/or process validation is achieved in a relevant environment.</td>
</tr>
<tr>
<td>TRL 6</td>
<td>Prototype System Verified: System/process prototype demonstration in an operational environment (beta prototype system level).</td>
</tr>
<tr>
<td>TRL 7</td>
<td>Integrated Pilot System Demonstrated: System/process prototype demonstration in an operational environment (integrated pilot system level).</td>
</tr>
<tr>
<td>TRL 8</td>
<td>System Incorporated in Commercial Design: Actual system/process completed and qualified through test and demonstration (pre-commercial demonstration).</td>
</tr>
<tr>
<td>TRL 9</td>
<td>System Proven and Ready for Full Commercial Deployment: Actual system proven through successful operations in operating environment, and ready for full commercial deployment.</td>
</tr>
</tbody>
</table>