Graeme Clark Institute
for Biomedical Engineering
Message from the director
Professor David Nisbet, Director at the Graeme Clark Institute. Image courtesy of Jamie Kidston, ANU

David Nisbet is a Professor of Translational Biomedical Engineering at the University of Melbourne. He is the Director of the Graeme Clark Institute and the Head of the Laboratory of Advanced Biomaterials. Dave joined the University of Melbourne after completing his Ph.D. at Monash University and Postdoctoral Fulbright Scholarship at the University of California, Berkeley. He then spent 10 years at the ANU, most recently as a jointly appointed Professor within the John Curtin School of Medical Research and the Research School of Chemistry. He is passionate about developing advanced biomaterials that are used to both mimic native cellular microenvironments and provide a platform for the targeted delivery of therapeutic molecules for regenerative medicine and tissue engineering.
His vision for the Graeme Clark Institute is “to transform healthcare with biomedical engineering solutions that deliver global health, societal and economic benefits”. This will be possible by the continued development of the multi-disciplinary Medtech ecosystem existing within the Parkville precinct and the University of Melbourne. In particular, the Graeme Clark Institute will bridge the translational gulf through direct “from patent to patient” developmental pipelines that incorporates clinical need into all aspects of MedTech product design, development, translation, and application.
Being positioned at the University of Melbourne and the Parkville Biomedical precinct offers a huge depth of biological science and engineering expertise within the Graeme Clark membership, making it possible for us to deliver new high impact technologies that solve long-standing health issues that are underserved by existing technologies – Professor Nisbet
To find out our aims, and organisational and governance structure, visit:
People
- David Nisbet
Director of the Graeme Clark Institute
Professor of Translational Biomedical Engineering
- Professor Mark Cook
Clinical Director
- Minh Hien Nguyen
Centre Manager, the Graeme Clark Institute
(Main contact for any enquiries)
Email: nguyen.m@unimelb.edu.au
Erin Wilson
Executive Support Office, the Graeme Clark Institute
Research
The Graeme Clark Institute draws on the collective medical, engineering and scientific capabilities of the University of Melbourne, supported by healthcare and research partners from the Melbourne Biomedical Precinct and beyond.
Key areas of biomedical engineering expertise within the Institute include tissue engineering, nanomedicine, biomimetics, biomechanics, medical bionics, implant systems, biosignals, medical robotics, mechanobiology, computational engineering, systems and synthetic biology, biomedical imaging, and health informatics.
-
Neuro-electronics therapy and bionics
The translation of neural-electronic interface research into improved health outcomes is gathering pace, with advances in implantable miniaturised electronic devices that record or stimulate nerve signals.
-
Personalised implants
Advances in 3D printing and the miniaturisation of devices are revolutionising medical technologies, providing the ability to personalise healthcare and improve the wellbeing of people around the world as never before.
-
Drug screening technologies and mechano-pharmacology
The field of ‘tissue-on-a-chip’ and ‘organ-on-a-dish’ is evolving rapidly and is opening opportunities in drug discovery, toxin screening and disease modelling.
-
Robotic neuroprosthesis
The research focus of this program is in the area of kinematics and dynamics of robotics mechanisms (its modelling, analysis and manipulation) and their applications primarily in biomedical and clinical tasks.
-
Assistive and rehabilitation robotics
This project focuses on the study of robotics technology in the investigating human motor systems and the clinical rehabilitation of people with motion impairment, such as in post-stroke patients.
-
Technologies for the management of Parkinson’s Disease
The research is focussed on the measurement movement disorders including Parkinson’s Disease (PD), to assist in their management
-
Biomaterials, bio-fabrication and regenerative medicine
The combination of materials science, materials engineering and clinical expertise is developing engineered tissues to replace or support the repair of natural tissue.
-
Computational modeling for cardiovascular disease
Advances in cardiovascular and stent technology are providing new options to support the operation of cardiac systems, to monitor performance and to deliver medication.
-
Biomedical imaging technologies
Advanced imaging technologies will lead to improved diagnosis and treatment of a wide range of neurological disorders.
-
Nano-materials and drug-delivery systems
Novel nano-materials that interact with the body’s biological processes at the cellular level are providing new, targeted drug-delivery opportunities.
-
Fluid dynamic modelling for pharmaceutical manufacturing
The program is developing computational fluid dynamics models to understand and predict the behaviour of platelets in typical blood flow and during clotting.
-
Polymeric drugs for combating anti-microbial resistance
Nature’s prowess in making molecules with astounding properties, such as DNA, serves as important inspiration to Professor Greg Qiao.
-
Synthetic biology approaches to designer-stem-cell-based therapies
This research develops experimental and computational approaches to apply engineering design and analysis principles to study existing biological cellular systems and to create new cellular systems with user-defined properties and functions.
-
3D structural support for High throughput compound and molecular screening
The development of three dimensional (3D), spheroid or organoid cellular cultures for the study of cellular function, therapeutic development and biomarker discovery, has been the cornerstone of cancer research for many years.
-
Reverse engineering the brain
The human brain is thought to be a predictive, efficient, and adaptive machine. The goal of this research program is to understand how the brain’s circuitry implements the mechanisms which enable us to perceive the world through our senses, learn, and make inferences and decisions.
-
Next generation therapies for hearing and balance
Human hearing and balance are two of the most poorly understood senses at a molecular level. This is largely the result of inaccessibility to the adult inner ear via biopsy, resulting in a lack of human tissue available for studying the specialised cell types that reside within it.
-
Multicellular Systems Biology
This program uses Mathematical and Computational methods to better understand multicellular biological systems with a focus on the influence of biomechanics on tissue and organ development and disease.
-
Microsystems engineering, micromanufacturing and cell-scale assembly
The microsystems engineering technologies research program looks to create and apply new ways of manipulating objects and cells with microscale precision, including high-throughput separation and the coordinated assembly and patterning into designed configurations, with a focus on translatable outcomes in cell cultures, tissues and therapeutics.
Industry
The Graeme Clark Institute partners with healthcare and research organisations, industry and government to solve today’s challenges and develop new technologies for tomorrow. We work with our partners to translate research into innovations that leads to improved health outcomes.
Centres and institutes contributing to research in biomedical engineering at the Graeme Clark Institute include:
- ARC Training Centre for Medical Implant Technologies
- ARC Training Centre in Cognitive Computing for Medical Technologies
- ARC Training Centre for Personalised Therapeutics Technologies
- Bionics Institute
- Bio21 Institute of Molecular Science and Biotechnology
- The Florey Institute of Neuroscience and Mental Health
- Aikenhead Centre for Medical Discovery
- Centre for Eye Research Australia
- Melbourne Academic Centre for Health
The Graeme Clark Institute for Biomedical Engineering (GCI) was created with Strategic STEM-M Funds to coordinate biomedical engineering activities across Faculty of Engineering and Information Technology (FEIT), Faculty of Medicine, Dentistry and Health Sciences (MDHS), and Faculty of Science (FoS). The GCI brings together expertise and capabilities from medicine, engineering, and science, including the life sciences, computer sciences, mathematics and the social sciences.
The GCI Research Support Initiatives are created to provide financial support to researchers in the biomedical engineering field with the goal to enhance interdisciplinary research, foster collaboration, celebrate excellence and support diversity and inclusion.